2018小学奥数专题四:简单方程的经典题型以及解题方法
方程的概念:
含有未知数的等式叫做方程,使方程左右两边相等的未知数的值,叫做方程的“解”。在数学中,方程常用于解决应用题,其优点在于可以使未知数直接参加运算。
用简单的方程解应用题:
列方程解应用题的一般步骤是:
①弄清题意,找出已知条件和所求问题;
②依题意确定等量关系,设未知数x;
③根据等量关系列出方程;
④解方程;
⑤检验,写出答案。
简单方程解应用题的经典例题:
例题一:已知篮球、足球、排球平均每个36元。篮球比排球每个多10元,足球比排球每个多8元,每个足球多少元?
解题方法:①篮球、足球、排球平均每个36元,购买三种球的总价是:36×3=108(元)。
②篮球和足球都与排球比,所以把排球的单价作为标准量,设为x。
③列方程时,等量关系可以确定为分类购球的总价=平均值导出的总价。
例题二:有一队伍以1.4米/秒的速度行军,末尾有一通讯员因事要通知排头,于是以2.6米/秒的速度从末尾赶到排头并立即返回排尾,共用了10分50秒。问:队伍有多长?
解题方法:这是一道“追及又相遇”的问题,通讯员从末尾到排头是追及问题,他与排头所行路程差为队伍长;通讯员从排头返回排尾是相遇问题,他与排尾所行路程和为队伍长。如果设通讯员从末尾到排头用了x秒,那么通讯员从排头返回排尾用了(650-x)秒,于是不难列方程。
解:设通讯员从末尾赶到排头用了x秒,依题意得2.6x-1.4x=2.6(650-x)+1.4(650-x)。
解得x=500。推知队伍长为(2.6-1.4)×500=600(米)。
答:队伍长为600米。
说明:在设未知数时,有两种办法:一种是设直接未知数,求什么、设什么;另一种设间接未知数,当直接设未知数不易列出方程时,就设与要求相关的间接未知数。对于较难的应用题,恰当选择未知数,往往可以使列方程变得容易些。
例题三:铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少?
我来说两句